« Calcul tensoriel/Notions élémentaires/Laplacien » : différence entre les versions

De testwiki
Aller à la navigation Aller à la recherche
imported>CaBot
m Bot : Indexation dans Catégorie:Calcul tensoriel (livre)
 
(Aucune différence)

Dernière version du 28 janvier 2010 à 12:55

Le laplacien est la divergence du gradient, la divergence étant prise sur l'indice tensoriel créé par le gradient.

Cette définition est valable pour un scalaire ou un tenseur quelconque a. La laplacien 2a=a;i;i=gija;i;j a le même nombre d'indices que a.

  • Pour un champ scalaire

2a=1detgi(detggijja)

  • Pour un champ vectoriel

...À RÉDIGER...

Ces formules permettent, une fois établi le tenseur métrique, de calculer facilement le laplacien dans un système de coordonnées quelconque. Voir par exemple le laplacien en coordonnées cylindriques et le laplacien en coordonnées sphériques.