Photographie/Photométrie/Calculs photométriques usuels

De testwiki
Aller à la navigation Aller à la recherche

Modèle:Ph s Photométrie

REMARQUE IMPORTANTE :

dans tous les calculs de photométrie
il faut exprimer les distances en mètres !!


Consulter d'abord, si nécessaire, le chapitre consacré à la notion d'angle solide.


Loi de l'inverse du carré de la distance, relation de Bouguer

Un simple constat pour commencer : la surface bleu clair et la surface bleu foncé interceptent le même flux provenant de la source lumineuse. La seconde surface ayant une aire quatre fois plus grande que la première, son éclairement est quatre fois plus faible.


Si elle était 3 fois plus loin, elle aurait une aire neuf fois plus grande et son éclairement serait neuf fois plus faible, etc.


Edgar Allan Poe a même inclus ce diagramme dans une de ses œuvres, en 1846 :


Et maintenant, en avant pour le calcul dans le cas le plus général !

Il faut montrer que l'éclairement d'une surface dS, placée à une distance r d'une source lumi­neuse ponctuelle P d'intensité uniforme I, varie en raison inverse du carré de la distance.

On appellera α l'angle, supposé constant, des rayons lumineux avec la normale à dS. La surface élémentaire dS étant vue obliquement depuis P, il faut calculer l'angle solide dΩ à partir de sa surface apparente dScosα :

r2dΩ=dScosαdΩ=dScosαr2.


Le flux reçu par la surface dS est dF=IdΩ et l'éclairement correspondant s'écrit :

E=dFdS=IdΩdS=Icosαr2.

La relation de Bouguer s'exprime par la formule suivante :


E=Icosαr2.


Si les rayons tombent perpendiculaire­ment sur la surface dS la formule se simplifie en :

E=Ir2.

Dans les mêmes conditions d'inclinaison, l'éclairement fourni par une source lumineuse est inversement proportionnel au carré de la distance séparant cette source de la surface récep­trice ou, d'une manière plus générale, du point où l'on veut évaluer l'éclairement : on peut en effet calculer l'éclairement en un point de l'espace, même s'il n'y existe aucun récepteur, à condition de préciser la direction dans laquelle on se place.

Calcul d'une puissance lumineuse

Une source lumineuse est placée à 4 m sur la normale à un écran carré de 100 mm de côté. Cette source, pratiquement ponctuelle, est une lampe survoltée à réflec­teur hémisphé­rique capable de rayonner de manière quasi uni­forme dans un angle solide de 2π sr (1/2 espace). Quelle doit être sa puis­sance lumineuse (en lumens) pour que l'éclairement reçu par l'écran soit de 100 lux ?


L'écran étant petit par rapport à sa dis­tance à la source, on peut supposer que tous les rayons arrivent perpendiculairement à sa surface et chercher l'intensité lumineuse :

E=Ir2I=Er2=100×16=1600 cd.

Cette intensité étant supposée uniforme, le flux total émis sera :

F=IΩ=1600×2π10000 lm.


F=10000 lm

Calcul d'un flux lumineux

L'écran du problème précédent est maintenant situé à 20 m de la source, toujours de telle manière que les rayons lui arrivent normalement. Calculer par trois méthodes différentes le flux qu'il reçoit.


  • Première méthode : on utilise le fait que l'éclairement varie en raison inverse du carré de sa distance à la source, qui passe de 4 m à 20 m :
E=10042202=4 lx.

En multipliant la distance par 5, l'éclaire­ment est en effet divisé par 25, rien d'étonnant.


Le flux cherché est le produit de l'éclai­rement par la surface :

F=4×0,12=0,04 lm


  • Seconde méthode : on cherche d'abord l'angle solide sous lequel l'écran est vu depuis la source. Le flux sera facile à calculer puisque l'intensité de cette dernière est connue :
S=r2ΩΩ=Sr2=0,01202=0,000025 sr.

On obtient :

F=IΩ=1600×0,000025=0,04 lm.

On remarquera que cette méthode n'est pas plus compliquée que la précédente, si ce n'est que dans notre cas particulier, elle oblige à manipuler des nombres peu commodes.


  • Troisième méthode : on peut encore partir du flux total émis dans le demi-espace et le multiplier par le rap­port des angles solides :
F=100000,0000252π=0,04 lm.


Naturellement le choix de la meilleure méthode à utiliser dépendra du travail à effectuer et des données disponibles.


Modèle:Ph Photométrie